Final Exam - Review 2 - Problems

Peyam Ryan Tabrizian

Friday, December 9th, 2011

1 Systems of differential equations

Problem 1

Solve $\mathbf{x}^{\prime}=A \mathbf{x}$, and find the fundamental matrix $X(t)$, where:

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & -14 & 7
\end{array}\right]
$$

Problem 2

Solve $\mathbf{x}^{\prime}=A \mathbf{x}$, where:

$$
A=\left[\begin{array}{ccc}
-1 & -2 & 0 \\
8 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Problem 3

Solve $\mathbf{x}^{\prime}=A \mathbf{x}$, where:

$$
A=\left[\begin{array}{ll}
5 & -3 \\
3 & -1
\end{array}\right]
$$

2 Grünbaum's coupled harmonic oscillator

Problem 4

Assume you're given a coupled mass-spring system with $N=2, m_{1}=m_{2}=1$, $k_{1}=k_{2}=k_{3}=1$. Find the proper frequencies and the proper modes of the system.

3 Partial differential equations and Fourier series

Problem 5

Find the Fourier cosine series of $f(x)=x^{2}$ on $(0, \pi)$

Problem 6

Find the solution of the following heat equation:

$$
\left\{\begin{array}{rlrl}
\frac{\partial u}{\partial t} & =4 \frac{\partial^{2} u}{\partial x^{2}} & 0<x<\pi, & t>0 \tag{1}\\
\frac{\partial u}{\partial x}(0, t) & =\frac{\partial u}{\partial x}(\pi, t)=0 & & t>0 \\
u(x, 0) & =x & 0<x<\pi
\end{array}\right.
$$

Problem 7

Find the solution of the following wave equation:

$$
\left\{\begin{array}{rlrl}
\frac{\partial^{2} u}{\partial t^{2}} & =9 \frac{\partial^{2} u}{\partial x^{2}} & 0<x<1, & t>0 \tag{2}\\
u(0, t) & =u(1, t)=0 & t>0 \\
u(x, 0) & =3 \sin (3 \pi x) & 0<x<1 \\
\frac{\partial u}{\partial t}(x, 0) & =5 \sin (4 \pi x) & 0<x<1
\end{array}\right.
$$

4 Higher-order differential equations

Problem 8

Are the functions $x e^{x}, x^{2} e^{x}, x^{3} e^{x}$ linearly independent or dependent on $(-\infty, \infty)$?

Problem 9

Find the largest interval (a, b) on which the following differential equation has a unique solution:

$$
(x-2) y^{\prime \prime}+\ln (x) y^{\prime}=\sqrt{3-x}
$$

with $y(1)=0, y^{\prime}(1)=2$.

Problem 10

(a) Solve $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0$
(b) Find the form of a particular solution to $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=e^{t}$

Problem 11

Solve $y^{\prime \prime}+y=\tan (t)$ using variation of parameters.

