Final Exam - Review 2 - Problems

Peyam Ryan Tabrizian

Friday, December 9th, 2011

1 Systems of differential equations

Problem 1

Solve $\mathbf{x}' = A\mathbf{x}$, and find the fundamental matrix X(t), where:

	0	1	0	
A =	0	0	1	
	8	-14	7	

Problem 2

Solve $\mathbf{x}' = A\mathbf{x}$, where:

$$A = \begin{bmatrix} -1 & -2 & 0\\ 8 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Problem 3

Solve $\mathbf{x}' = A\mathbf{x}$, where:

$$A = \begin{bmatrix} 5 & -3 \\ 3 & -1 \end{bmatrix}$$

2 Grünbaum's coupled harmonic oscillator

Problem 4

Assume you're given a coupled mass-spring system with N = 2, $m_1 = m_2 = 1$, $k_1 = k_2 = k_3 = 1$. Find the proper frequencies and the proper modes of the system.

3 Partial differential equations and Fourier series

Problem 5

Find the Fourier cosine series of $f(x) = x^2$ on $(0, \pi)$

Problem 6

Find the solution of the following heat equation:

$$\begin{cases} \frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2} & 0 < x < \pi, \quad t > 0 \\ \frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(\pi,t) = 0 & t > 0 \\ u(x,0) = x & 0 < x < \pi \end{cases}$$
(1)

Problem 7

Find the solution of the following wave equation:

$$\frac{\partial^2 u}{\partial t^2} = 9 \frac{\partial^2 u}{\partial x^2} \qquad 0 < x < 1, \quad t > 0$$

$$u(0,t) = u(1,t) = 0 \qquad t > 0$$

$$u(x,0) = 3\sin(3\pi x) \qquad 0 < x < 1$$

$$\frac{\partial u}{\partial t}(x,0) = 5\sin(4\pi x) \qquad 0 < x < 1$$
(2)

4 Higher-order differential equations

Problem 8

Are the functions xe^x, x^2e^x, x^3e^x linearly independent or dependent on $(-\infty,\infty)$?

Problem 9

Find the largest interval (a, b) on which the following differential equation has a unique solution:

$$(x-2)y'' + \ln(x)y' = \sqrt{3-x}$$

with y(1) = 0, y'(1) = 2.

Problem 10

(a) Solve y''' - 3y'' + 3y' - y = 0

(b) Find the form of a particular solution to $y^{\prime\prime\prime} - 3y^{\prime\prime} + 3y^{\prime} - y = e^t$

Problem 11

Solve $y'' + y = \tan(t)$ using variation of parameters.